aboutsummaryrefslogtreecommitdiff
path: root/src/gpt_chat_cli/argparsing.py
blob: a7d321825b9fed280d754769567a73785856df5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import argparse
import os
import logging
import openai
import sys
from enum import Enum

class AutoDetectedOption(Enum):
    ON = 'on'
    OFF = 'off'
    AUTO = 'auto'

def die_validation_err(err : str):
    print(err, file=sys.stderr)
    sys.exit(1)

def validate_args(args: argparse.Namespace) -> None:
    if not 0 <= args.temperature <= 2:
        die_validation_err("Temperature must be between 0 and 2.")

    if not -2 <= args.frequency_penalty <= 2:
        die_validation_err("Frequency penalty must be between -2.0 and 2.0.")

    if not -2 <= args.presence_penalty <= 2:
        die_validation_err("Presence penalty must be between -2.0 and 2.0.")

    if args.max_tokens < 1:
        die_validation_err("Max tokens must be greater than or equal to 1.")

    if not 0 <= args.top_p <= 1:
        die_validation_err("Top_p must be between 0 and 1.")

    if args.n_completions < 1:
        die_validation_err("Number of completions must be greater than or equal to 1.")

def parse_args():

    GCLI_ENV_PREFIX = "GCLI_"

    debug = os.getenv(f'{GCLI_ENV_PREFIX}DEBUG') is not None

    if debug:
        logging.warning("Debugging mode and unstable features have been enabled.")

    parser = argparse.ArgumentParser()

    parser.add_argument(
        "-m",
        "--model",
        default=os.getenv(f'{GCLI_ENV_PREFIX}MODEL', "gpt-3.5-turbo"),
        help="ID of the model to use",
    )

    parser.add_argument(
        "-t",
        "--temperature",
        type=float,
        default=os.getenv(f'{GCLI_ENV_PREFIX}TEMPERATURE', 0.5),
        help=(
            "What sampling temperature to use, between 0 and 2. Higher values "
            "like 0.8 will make the output more random, while lower values "
            "like 0.2 will make it more focused and deterministic."
        ),
    )

    parser.add_argument(
        "-f",
        "--frequency-penalty",
        type=float,
        default=os.getenv(f'{GCLI_ENV_PREFIX}FREQUENCY_PENALTY', 0),
        help=(
            "Number between -2.0 and 2.0. Positive values penalize new tokens based "
            "on their existing frequency in the text so far, decreasing the model's "
            "likelihood to repeat the same line verbatim."
        ),
    )

    parser.add_argument(
        "-p",
        "--presence-penalty",
        type=float,
        default=os.getenv(f'{GCLI_ENV_PREFIX}PRESENCE_PENALTY', 0),
        help=(
            "Number between -2.0 and 2.0. Positive values penalize new tokens based "
            "on whether they appear in the text so far, increasing the model's "
            "likelihood to talk about new topics."
        ),
    )

    parser.add_argument(
        "-k",
        "--max-tokens",
        type=int,
        default=os.getenv(f'{GCLI_ENV_PREFIX}MAX_TOKENS', 2048),
        help=(
            "The maximum number of tokens to generate in the chat completion. "
            "Defaults to 2048."
        ),
    )

    parser.add_argument(
        "-s",
        "--top-p",
        type=float,
        default=os.getenv(f'{GCLI_ENV_PREFIX}TOP_P', 1),
        help=(
            "An alternative to sampling with temperature, called nucleus sampling, "
            "where the model considers the results of the tokens with top_p "
            "probability mass. So 0.1 means only the tokens comprising the top 10%% "
            "probability mass are considered."
        ),
    )

    parser.add_argument(
        "-n",
        "--n-completions",
        type=int,
        default=os.getenv('f{GCLI_ENV_PREFIX}N_COMPLETIONS', 1),
        help="How many chat completion choices to generate for each input message.",
    )

    parser.add_argument(
        "--adornments",
        type=AutoDetectedOption,
        choices=list(AutoDetectedOption),
        default=AutoDetectedOption.AUTO,
        help=(
            "Show adornments to indicate the model and response."
            " Can be set to 'on', 'off', or 'auto'."
        )
    )

    parser.add_argument(
        "--color",
        type=AutoDetectedOption,
        choices=list(AutoDetectedOption),
        default=AutoDetectedOption.AUTO,
        help="Set color to 'on', 'off', or 'auto'.",
    )

    parser.add_argument(
        "message",
        type=str,
        help=(
            "The contents of the message. When used in chat mode, this is the initial "
            "message if provided."
        ),
    )

    if debug:
        group = parser.add_mutually_exclusive_group()

        group.add_argument(
            '--save-response-to-file',
            type=str,
            help="UNSTABLE: save the response to a file. This can reply a response for debugging purposes",
        )

        group.add_argument(
            '--load-response-from-file',
            type=str,
            help="UNSTABLE: load a response from a file. This can reply a response for debugging purposes",
        )

    openai_key = os.getenv("OPENAI_KEY", os.getenv("OPENAI_API_KEY"))
    if not openai_key:
        print("The OPENAI_API_KEY or OPENAI_KEY environment variable must be defined.", file=sys.stderr)
        print("The OpenAI API uses API keys for authentication. Visit your (API Keys page)[https://platform.openai.com/account/api-keys] to retrieve the API key you'll use in your requests.", file=sys.stderr)
        sys.exit(1)

    openai.api_key = openai_key

    args = parser.parse_args()

    if debug and args.load_response_from_file:
        logging.warning(f'Ignoring the provided arguments in favor of those provided when the response in {args.load_response_from_file} was generated')

    if args.color == AutoDetectedOption.AUTO:
        if os.getenv("NO_COLOR"):
            args.color = AutoDetectedOption.OFF
        else:
            args.color = AutoDetectedOption.ON

    if args.adornments == AutoDetectedOption.AUTO:
        args.adornments = AutoDetectedOption.ON

    if not debug:
        args.load_response_from_file = None
        args.save_response_to_file = None

    validate_args(args)

    return args