1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
import argparse
import os
import logging
import openai
import sys
from enum import Enum
from dataclasses import dataclass
from typing import Tuple, Optional
class AutoDetectedOption(Enum):
ON = 'on'
OFF = 'off'
AUTO = 'auto'
def __str__(self : "AutoDetectedOption"):
return self.value
def die_validation_err(err : str):
print(err, file=sys.stderr)
sys.exit(1)
def validate_args(args: argparse.Namespace, debug : bool = False) -> None:
if not 0 <= args.temperature <= 2:
die_validation_err("Temperature must be between 0 and 2.")
if not -2 <= args.frequency_penalty <= 2:
die_validation_err("Frequency penalty must be between -2.0 and 2.0.")
if not -2 <= args.presence_penalty <= 2:
die_validation_err("Presence penalty must be between -2.0 and 2.0.")
if args.max_tokens < 1:
die_validation_err("Max tokens must be greater than or equal to 1.")
if not 0 <= args.top_p <= 1:
die_validation_err("Top_p must be between 0 and 1.")
if args.n_completions < 1:
die_validation_err("Number of completions must be greater than or equal to 1.")
if args.interactive and args.n_completions != 1:
die_validation_err("Only a single completion can be used in interactive mode")
if debug and args.interactive:
if args.interactive and (
args.save_response_to_file or args.load_response_from_file
):
die_validation_err("Save and load operations cannot be used in interactive mode")
@dataclass
class CompletionArguments:
model: str
n_completions: int
temperature: float
presence_penalty: float
frequency_penalty: float
max_tokens: int
top_p: float
@dataclass
class DisplayArguments:
adornments: bool
color: bool
@dataclass
class DebugArguments:
save_response_to_file: Optional[str]
load_response_from_file: Optional[str]
@dataclass
class Arguments:
completion_args: CompletionArguments
display_args: DisplayArguments
version: bool
list_models: bool
interactive: bool
initial_message: Optional[str] = None
debug_args: Optional[DebugArguments] = None
def split_arguments(args: argparse.Namespace) -> Arguments:
completion_args = CompletionArguments(
model=args.model,
n_completions=args.n_completions,
temperature=args.temperature,
presence_penalty=args.presence_penalty,
frequency_penalty=args.frequency_penalty,
max_tokens=args.max_tokens,
top_p=args.top_p,
)
display_args = DisplayArguments(
adornments=(args.adornments == AutoDetectedOption.ON),
color=(args.color == AutoDetectedOption.ON),
)
debug_args = DebugArguments(
save_response_to_file=args.save_response_to_file,
load_response_from_file=args.load_response_from_file,
)
return Arguments(
initial_message=args.message,
completion_args=completion_args,
display_args=display_args,
debug_args=debug_args,
version=args.version,
list_models=args.list_models,
interactive=args.interactive
)
def parse_args() -> Arguments:
GCLI_ENV_PREFIX = "GCLI_"
debug = os.getenv(f'{GCLI_ENV_PREFIX}DEBUG') is not None
if debug:
logging.warning("Debugging mode and unstable features have been enabled.")
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
default=os.getenv(f'{GCLI_ENV_PREFIX}MODEL', "gpt-3.5-turbo"),
help="ID of the model to use",
)
parser.add_argument(
"-t",
"--temperature",
type=float,
default=os.getenv(f'{GCLI_ENV_PREFIX}TEMPERATURE', 0.5),
help=(
"What sampling temperature to use, between 0 and 2. Higher values "
"like 0.8 will make the output more random, while lower values "
"like 0.2 will make it more focused and deterministic."
),
)
parser.add_argument(
"-f",
"--frequency-penalty",
type=float,
default=os.getenv(f'{GCLI_ENV_PREFIX}FREQUENCY_PENALTY', 0),
help=(
"Number between -2.0 and 2.0. Positive values penalize new tokens based "
"on their existing frequency in the text so far, decreasing the model's "
"likelihood to repeat the same line verbatim."
),
)
parser.add_argument(
"-p",
"--presence-penalty",
type=float,
default=os.getenv(f'{GCLI_ENV_PREFIX}PRESENCE_PENALTY', 0),
help=(
"Number between -2.0 and 2.0. Positive values penalize new tokens based "
"on whether they appear in the text so far, increasing the model's "
"likelihood to talk about new topics."
),
)
parser.add_argument(
"-k",
"--max-tokens",
type=int,
default=os.getenv(f'{GCLI_ENV_PREFIX}MAX_TOKENS', 2048),
help=(
"The maximum number of tokens to generate in the chat completion. "
"Defaults to 2048."
),
)
parser.add_argument(
"-s",
"--top-p",
type=float,
default=os.getenv(f'{GCLI_ENV_PREFIX}TOP_P', 1),
help=(
"An alternative to sampling with temperature, called nucleus sampling, "
"where the model considers the results of the tokens with top_p "
"probability mass. So 0.1 means only the tokens comprising the top 10%% "
"probability mass are considered."
),
)
parser.add_argument(
"-n",
"--n-completions",
type=int,
default=os.getenv('f{GCLI_ENV_PREFIX}N_COMPLETIONS', 1),
help="How many chat completion choices to generate for each input message.",
)
parser.add_argument(
"--adornments",
type=AutoDetectedOption,
choices=list(AutoDetectedOption),
default=AutoDetectedOption.AUTO,
help=(
"Show adornments to indicate the model and response."
" Can be set to 'on', 'off', or 'auto'."
)
)
parser.add_argument(
"--color",
type=AutoDetectedOption,
choices=list(AutoDetectedOption),
default=AutoDetectedOption.AUTO,
help="Set color to 'on', 'off', or 'auto'.",
)
parser.add_argument(
"--version",
action="store_true",
help="Print version and exit"
)
parser.add_argument(
"-l",
"--list-models",
action="store_true",
help="List models and exit"
)
parser.add_argument(
"-i",
"--interactive",
action="store_true",
help="Start an interactive session"
)
parser.add_argument(
"message",
type=str,
nargs='?',
help=(
"The contents of the message. When in a interactive session, this is "
" the initial prompt provided."
),
)
if debug:
group = parser.add_mutually_exclusive_group()
group.add_argument(
'--save-response-to-file',
type=str,
help="UNSTABLE: save the response to a file. This can reply a response for debugging purposes",
)
group.add_argument(
'--load-response-from-file',
type=str,
help="UNSTABLE: load a response from a file. This can reply a response for debugging purposes",
)
openai_key = os.getenv("OPENAI_KEY", os.getenv("OPENAI_API_KEY"))
if not openai_key:
print("The OPENAI_API_KEY or OPENAI_KEY environment variable must be defined.", file=sys.stderr)
print("The OpenAI API uses API keys for authentication. Visit your (API Keys page)[https://platform.openai.com/account/api-keys] to retrieve the API key you'll use in your requests.", file=sys.stderr)
sys.exit(1)
openai.api_key = openai_key
args = parser.parse_args()
if debug and args.load_response_from_file:
logging.warning(f'Ignoring the provided arguments in favor of those provided when the response in {args.load_response_from_file} was generated')
if args.color == AutoDetectedOption.AUTO:
if os.getenv("NO_COLOR"):
args.color = AutoDetectedOption.OFF
elif sys.stdout.isatty():
args.color = AutoDetectedOption.ON
else:
args.color = AutoDetectedOption.OFF
if args.adornments == AutoDetectedOption.AUTO:
if sys.stdout.isatty():
args.adornments = AutoDetectedOption.ON
else:
args.adornments = AutoDetectedOption.OFF
if args.message is None:
if sys.stdin.isatty():
args.interactive = True
if not debug:
args.load_response_from_file = None
args.save_response_to_file = None
validate_args(args, debug=debug)
return split_arguments(args)
|