1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
|
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright (C) 2015-2016 The fiat-crypto Authors.
* Copyright (C) 2018-2020 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*
* This is a machine-generated formally verified implementation of Curve25519
* ECDH from: <https://github.com/mit-plv/fiat-crypto>. Though originally
* machine generated, it has been tweaked to be suitable for use in the kernel.
* It is optimized for 32-bit machines and machines that cannot work efficiently
* with 128-bit integer types.
*/
/* fe means field element. Here the field is \Z/(2^255-19). An element t,
* entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
* t[3]+2^102 t[4]+...+2^230 t[9].
* fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc.
* Multiplication and carrying produce fe from fe_loose.
*/
typedef struct fe { u32 v[10]; } fe;
/* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc
* Addition and subtraction produce fe_loose from (fe, fe).
*/
typedef struct fe_loose { u32 v[10]; } fe_loose;
static __always_inline void fe_frombytes_impl(u32 h[10], const u8 *s)
{
/* Ignores top bit of s. */
u32 a0 = get_unaligned_le32(s);
u32 a1 = get_unaligned_le32(s+4);
u32 a2 = get_unaligned_le32(s+8);
u32 a3 = get_unaligned_le32(s+12);
u32 a4 = get_unaligned_le32(s+16);
u32 a5 = get_unaligned_le32(s+20);
u32 a6 = get_unaligned_le32(s+24);
u32 a7 = get_unaligned_le32(s+28);
h[0] = a0&((1<<26)-1); /* 26 used, 32-26 left. 26 */
h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 = 6+19 = 25 */
h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */
h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) + 6 = 19+ 6 = 25 */
h[4] = (a3>> 6); /* (32- 6) = 26 */
h[5] = a4&((1<<25)-1); /* 25 */
h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 = 7+19 = 26 */
h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */
h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) + 6 = 20+ 6 = 26 */
h[9] = (a7>> 6)&((1<<25)-1); /* 25 */
}
static __always_inline void fe_frombytes(fe *h, const u8 *s)
{
fe_frombytes_impl(h->v, s);
}
static __always_inline u8 /*bool*/
addcarryx_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
{
/* This function extracts 25 bits of result and 1 bit of carry
* (26 total), so a 32-bit intermediate is sufficient.
*/
u32 x = a + b + c;
*low = x & ((1 << 25) - 1);
return (x >> 25) & 1;
}
static __always_inline u8 /*bool*/
addcarryx_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
{
/* This function extracts 26 bits of result and 1 bit of carry
* (27 total), so a 32-bit intermediate is sufficient.
*/
u32 x = a + b + c;
*low = x & ((1 << 26) - 1);
return (x >> 26) & 1;
}
static __always_inline u8 /*bool*/
subborrow_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
{
/* This function extracts 25 bits of result and 1 bit of borrow
* (26 total), so a 32-bit intermediate is sufficient.
*/
u32 x = a - b - c;
*low = x & ((1 << 25) - 1);
return x >> 31;
}
static __always_inline u8 /*bool*/
subborrow_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
{
/* This function extracts 26 bits of result and 1 bit of borrow
*(27 total), so a 32-bit intermediate is sufficient.
*/
u32 x = a - b - c;
*low = x & ((1 << 26) - 1);
return x >> 31;
}
static __always_inline u32 cmovznz32(u32 t, u32 z, u32 nz)
{
t = -!!t; /* all set if nonzero, 0 if 0 */
return (t&nz) | ((~t)&z);
}
static __always_inline void fe_freeze(u32 out[10], const u32 in1[10])
{
{ const u32 x17 = in1[9];
{ const u32 x18 = in1[8];
{ const u32 x16 = in1[7];
{ const u32 x14 = in1[6];
{ const u32 x12 = in1[5];
{ const u32 x10 = in1[4];
{ const u32 x8 = in1[3];
{ const u32 x6 = in1[2];
{ const u32 x4 = in1[1];
{ const u32 x2 = in1[0];
{ u32 x20; u8/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20);
{ u32 x23; u8/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23);
{ u32 x26; u8/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26);
{ u32 x29; u8/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29);
{ u32 x32; u8/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32);
{ u32 x35; u8/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35);
{ u32 x38; u8/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38);
{ u32 x41; u8/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41);
{ u32 x44; u8/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44);
{ u32 x47; u8/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47);
{ u32 x49 = cmovznz32(x48, 0x0, 0xffffffff);
{ u32 x50 = (x49 & 0x3ffffed);
{ u32 x52; u8/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52);
{ u32 x54 = (x49 & 0x1ffffff);
{ u32 x56; u8/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56);
{ u32 x58 = (x49 & 0x3ffffff);
{ u32 x60; u8/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60);
{ u32 x62 = (x49 & 0x1ffffff);
{ u32 x64; u8/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64);
{ u32 x66 = (x49 & 0x3ffffff);
{ u32 x68; u8/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68);
{ u32 x70 = (x49 & 0x1ffffff);
{ u32 x72; u8/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72);
{ u32 x74 = (x49 & 0x3ffffff);
{ u32 x76; u8/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76);
{ u32 x78 = (x49 & 0x1ffffff);
{ u32 x80; u8/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80);
{ u32 x82 = (x49 & 0x3ffffff);
{ u32 x84; u8/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84);
{ u32 x86 = (x49 & 0x1ffffff);
{ u32 x88; addcarryx_u25(x85, x47, x86, &x88);
out[0] = x52;
out[1] = x56;
out[2] = x60;
out[3] = x64;
out[4] = x68;
out[5] = x72;
out[6] = x76;
out[7] = x80;
out[8] = x84;
out[9] = x88;
}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}
static __always_inline void fe_tobytes(u8 s[32], const fe *f)
{
u32 h[10];
fe_freeze(h, f->v);
s[0] = h[0] >> 0;
s[1] = h[0] >> 8;
s[2] = h[0] >> 16;
s[3] = (h[0] >> 24) | (h[1] << 2);
s[4] = h[1] >> 6;
s[5] = h[1] >> 14;
s[6] = (h[1] >> 22) | (h[2] << 3);
s[7] = h[2] >> 5;
s[8] = h[2] >> 13;
s[9] = (h[2] >> 21) | (h[3] << 5);
s[10] = h[3] >> 3;
s[11] = h[3] >> 11;
s[12] = (h[3] >> 19) | (h[4] << 6);
s[13] = h[4] >> 2;
s[14] = h[4] >> 10;
s[15] = h[4] >> 18;
s[16] = h[5] >> 0;
s[17] = h[5] >> 8;
s[18] = h[5] >> 16;
s[19] = (h[5] >> 24) | (h[6] << 1);
s[20] = h[6] >> 7;
s[21] = h[6] >> 15;
s[22] = (h[6] >> 23) | (h[7] << 3);
s[23] = h[7] >> 5;
s[24] = h[7] >> 13;
s[25] = (h[7] >> 21) | (h[8] << 4);
s[26] = h[8] >> 4;
s[27] = h[8] >> 12;
s[28] = (h[8] >> 20) | (h[9] << 6);
s[29] = h[9] >> 2;
s[30] = h[9] >> 10;
s[31] = h[9] >> 18;
}
/* h = f */
static __always_inline void fe_copy(fe *h, const fe *f)
{
memmove(h, f, sizeof(u32) * 10);
}
static __always_inline void fe_copy_lt(fe_loose *h, const fe *f)
{
memmove(h, f, sizeof(u32) * 10);
}
/* h = 0 */
static __always_inline void fe_0(fe *h)
{
memset(h, 0, sizeof(u32) * 10);
}
/* h = 1 */
static __always_inline void fe_1(fe *h)
{
memset(h, 0, sizeof(u32) * 10);
h->v[0] = 1;
}
static void fe_add_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
{
{ const u32 x20 = in1[9];
{ const u32 x21 = in1[8];
{ const u32 x19 = in1[7];
{ const u32 x17 = in1[6];
{ const u32 x15 = in1[5];
{ const u32 x13 = in1[4];
{ const u32 x11 = in1[3];
{ const u32 x9 = in1[2];
{ const u32 x7 = in1[1];
{ const u32 x5 = in1[0];
{ const u32 x38 = in2[9];
{ const u32 x39 = in2[8];
{ const u32 x37 = in2[7];
{ const u32 x35 = in2[6];
{ const u32 x33 = in2[5];
{ const u32 x31 = in2[4];
{ const u32 x29 = in2[3];
{ const u32 x27 = in2[2];
{ const u32 x25 = in2[1];
{ const u32 x23 = in2[0];
out[0] = (x5 + x23);
out[1] = (x7 + x25);
out[2] = (x9 + x27);
out[3] = (x11 + x29);
out[4] = (x13 + x31);
out[5] = (x15 + x33);
out[6] = (x17 + x35);
out[7] = (x19 + x37);
out[8] = (x21 + x39);
out[9] = (x20 + x38);
}}}}}}}}}}}}}}}}}}}}
}
/* h = f + g
* Can overlap h with f or g.
*/
static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g)
{
fe_add_impl(h->v, f->v, g->v);
}
static void fe_sub_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
{
{ const u32 x20 = in1[9];
{ const u32 x21 = in1[8];
{ const u32 x19 = in1[7];
{ const u32 x17 = in1[6];
{ const u32 x15 = in1[5];
{ const u32 x13 = in1[4];
{ const u32 x11 = in1[3];
{ const u32 x9 = in1[2];
{ const u32 x7 = in1[1];
{ const u32 x5 = in1[0];
{ const u32 x38 = in2[9];
{ const u32 x39 = in2[8];
{ const u32 x37 = in2[7];
{ const u32 x35 = in2[6];
{ const u32 x33 = in2[5];
{ const u32 x31 = in2[4];
{ const u32 x29 = in2[3];
{ const u32 x27 = in2[2];
{ const u32 x25 = in2[1];
{ const u32 x23 = in2[0];
out[0] = ((0x7ffffda + x5) - x23);
out[1] = ((0x3fffffe + x7) - x25);
out[2] = ((0x7fffffe + x9) - x27);
out[3] = ((0x3fffffe + x11) - x29);
out[4] = ((0x7fffffe + x13) - x31);
out[5] = ((0x3fffffe + x15) - x33);
out[6] = ((0x7fffffe + x17) - x35);
out[7] = ((0x3fffffe + x19) - x37);
out[8] = ((0x7fffffe + x21) - x39);
out[9] = ((0x3fffffe + x20) - x38);
}}}}}}}}}}}}}}}}}}}}
}
/* h = f - g
* Can overlap h with f or g.
*/
static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g)
{
fe_sub_impl(h->v, f->v, g->v);
}
static void fe_mul_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
{
{ const u32 x20 = in1[9];
{ const u32 x21 = in1[8];
{ const u32 x19 = in1[7];
{ const u32 x17 = in1[6];
{ const u32 x15 = in1[5];
{ const u32 x13 = in1[4];
{ const u32 x11 = in1[3];
{ const u32 x9 = in1[2];
{ const u32 x7 = in1[1];
{ const u32 x5 = in1[0];
{ const u32 x38 = in2[9];
{ const u32 x39 = in2[8];
{ const u32 x37 = in2[7];
{ const u32 x35 = in2[6];
{ const u32 x33 = in2[5];
{ const u32 x31 = in2[4];
{ const u32 x29 = in2[3];
{ const u32 x27 = in2[2];
{ const u32 x25 = in2[1];
{ const u32 x23 = in2[0];
{ u64 x40 = ((u64)x23 * x5);
{ u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
{ u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
{ u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
{ u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
{ u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
{ u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
{ u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
{ u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
{ u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
{ u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
{ u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
{ u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
{ u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
{ u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
{ u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
{ u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
{ u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
{ u64 x58 = ((u64)(0x2 * x38) * x20);
{ u64 x59 = (x48 + (x58 << 0x4));
{ u64 x60 = (x59 + (x58 << 0x1));
{ u64 x61 = (x60 + x58);
{ u64 x62 = (x47 + (x57 << 0x4));
{ u64 x63 = (x62 + (x57 << 0x1));
{ u64 x64 = (x63 + x57);
{ u64 x65 = (x46 + (x56 << 0x4));
{ u64 x66 = (x65 + (x56 << 0x1));
{ u64 x67 = (x66 + x56);
{ u64 x68 = (x45 + (x55 << 0x4));
{ u64 x69 = (x68 + (x55 << 0x1));
{ u64 x70 = (x69 + x55);
{ u64 x71 = (x44 + (x54 << 0x4));
{ u64 x72 = (x71 + (x54 << 0x1));
{ u64 x73 = (x72 + x54);
{ u64 x74 = (x43 + (x53 << 0x4));
{ u64 x75 = (x74 + (x53 << 0x1));
{ u64 x76 = (x75 + x53);
{ u64 x77 = (x42 + (x52 << 0x4));
{ u64 x78 = (x77 + (x52 << 0x1));
{ u64 x79 = (x78 + x52);
{ u64 x80 = (x41 + (x51 << 0x4));
{ u64 x81 = (x80 + (x51 << 0x1));
{ u64 x82 = (x81 + x51);
{ u64 x83 = (x40 + (x50 << 0x4));
{ u64 x84 = (x83 + (x50 << 0x1));
{ u64 x85 = (x84 + x50);
{ u64 x86 = (x85 >> 0x1a);
{ u32 x87 = ((u32)x85 & 0x3ffffff);
{ u64 x88 = (x86 + x82);
{ u64 x89 = (x88 >> 0x19);
{ u32 x90 = ((u32)x88 & 0x1ffffff);
{ u64 x91 = (x89 + x79);
{ u64 x92 = (x91 >> 0x1a);
{ u32 x93 = ((u32)x91 & 0x3ffffff);
{ u64 x94 = (x92 + x76);
{ u64 x95 = (x94 >> 0x19);
{ u32 x96 = ((u32)x94 & 0x1ffffff);
{ u64 x97 = (x95 + x73);
{ u64 x98 = (x97 >> 0x1a);
{ u32 x99 = ((u32)x97 & 0x3ffffff);
{ u64 x100 = (x98 + x70);
{ u64 x101 = (x100 >> 0x19);
{ u32 x102 = ((u32)x100 & 0x1ffffff);
{ u64 x103 = (x101 + x67);
{ u64 x104 = (x103 >> 0x1a);
{ u32 x105 = ((u32)x103 & 0x3ffffff);
{ u64 x106 = (x104 + x64);
{ u64 x107 = (x106 >> 0x19);
{ u32 x108 = ((u32)x106 & 0x1ffffff);
{ u64 x109 = (x107 + x61);
{ u64 x110 = (x109 >> 0x1a);
{ u32 x111 = ((u32)x109 & 0x3ffffff);
{ u64 x112 = (x110 + x49);
{ u64 x113 = (x112 >> 0x19);
{ u32 x114 = ((u32)x112 & 0x1ffffff);
{ u64 x115 = (x87 + (0x13 * x113));
{ u32 x116 = (u32) (x115 >> 0x1a);
{ u32 x117 = ((u32)x115 & 0x3ffffff);
{ u32 x118 = (x116 + x90);
{ u32 x119 = (x118 >> 0x19);
{ u32 x120 = (x118 & 0x1ffffff);
out[0] = x117;
out[1] = x120;
out[2] = (x119 + x93);
out[3] = x96;
out[4] = x99;
out[5] = x102;
out[6] = x105;
out[7] = x108;
out[8] = x111;
out[9] = x114;
}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}
static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g)
{
fe_mul_impl(h->v, f->v, g->v);
}
static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g)
{
fe_mul_impl(h->v, f->v, g->v);
}
static __always_inline void
fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g)
{
fe_mul_impl(h->v, f->v, g->v);
}
static void fe_sqr_impl(u32 out[10], const u32 in1[10])
{
{ const u32 x17 = in1[9];
{ const u32 x18 = in1[8];
{ const u32 x16 = in1[7];
{ const u32 x14 = in1[6];
{ const u32 x12 = in1[5];
{ const u32 x10 = in1[4];
{ const u32 x8 = in1[3];
{ const u32 x6 = in1[2];
{ const u32 x4 = in1[1];
{ const u32 x2 = in1[0];
{ u64 x19 = ((u64)x2 * x2);
{ u64 x20 = ((u64)(0x2 * x2) * x4);
{ u64 x21 = (0x2 * (((u64)x4 * x4) + ((u64)x2 * x6)));
{ u64 x22 = (0x2 * (((u64)x4 * x6) + ((u64)x2 * x8)));
{ u64 x23 = ((((u64)x6 * x6) + ((u64)(0x4 * x4) * x8)) + ((u64)(0x2 * x2) * x10));
{ u64 x24 = (0x2 * ((((u64)x6 * x8) + ((u64)x4 * x10)) + ((u64)x2 * x12)));
{ u64 x25 = (0x2 * (((((u64)x8 * x8) + ((u64)x6 * x10)) + ((u64)x2 * x14)) + ((u64)(0x2 * x4) * x12)));
{ u64 x26 = (0x2 * (((((u64)x8 * x10) + ((u64)x6 * x12)) + ((u64)x4 * x14)) + ((u64)x2 * x16)));
{ u64 x27 = (((u64)x10 * x10) + (0x2 * ((((u64)x6 * x14) + ((u64)x2 * x18)) + (0x2 * (((u64)x4 * x16) + ((u64)x8 * x12))))));
{ u64 x28 = (0x2 * ((((((u64)x10 * x12) + ((u64)x8 * x14)) + ((u64)x6 * x16)) + ((u64)x4 * x18)) + ((u64)x2 * x17)));
{ u64 x29 = (0x2 * (((((u64)x12 * x12) + ((u64)x10 * x14)) + ((u64)x6 * x18)) + (0x2 * (((u64)x8 * x16) + ((u64)x4 * x17)))));
{ u64 x30 = (0x2 * (((((u64)x12 * x14) + ((u64)x10 * x16)) + ((u64)x8 * x18)) + ((u64)x6 * x17)));
{ u64 x31 = (((u64)x14 * x14) + (0x2 * (((u64)x10 * x18) + (0x2 * (((u64)x12 * x16) + ((u64)x8 * x17))))));
{ u64 x32 = (0x2 * ((((u64)x14 * x16) + ((u64)x12 * x18)) + ((u64)x10 * x17)));
{ u64 x33 = (0x2 * ((((u64)x16 * x16) + ((u64)x14 * x18)) + ((u64)(0x2 * x12) * x17)));
{ u64 x34 = (0x2 * (((u64)x16 * x18) + ((u64)x14 * x17)));
{ u64 x35 = (((u64)x18 * x18) + ((u64)(0x4 * x16) * x17));
{ u64 x36 = ((u64)(0x2 * x18) * x17);
{ u64 x37 = ((u64)(0x2 * x17) * x17);
{ u64 x38 = (x27 + (x37 << 0x4));
{ u64 x39 = (x38 + (x37 << 0x1));
{ u64 x40 = (x39 + x37);
{ u64 x41 = (x26 + (x36 << 0x4));
{ u64 x42 = (x41 + (x36 << 0x1));
{ u64 x43 = (x42 + x36);
{ u64 x44 = (x25 + (x35 << 0x4));
{ u64 x45 = (x44 + (x35 << 0x1));
{ u64 x46 = (x45 + x35);
{ u64 x47 = (x24 + (x34 << 0x4));
{ u64 x48 = (x47 + (x34 << 0x1));
{ u64 x49 = (x48 + x34);
{ u64 x50 = (x23 + (x33 << 0x4));
{ u64 x51 = (x50 + (x33 << 0x1));
{ u64 x52 = (x51 + x33);
{ u64 x53 = (x22 + (x32 << 0x4));
{ u64 x54 = (x53 + (x32 << 0x1));
{ u64 x55 = (x54 + x32);
{ u64 x56 = (x21 + (x31 << 0x4));
{ u64 x57 = (x56 + (x31 << 0x1));
{ u64 x58 = (x57 + x31);
{ u64 x59 = (x20 + (x30 << 0x4));
{ u64 x60 = (x59 + (x30 << 0x1));
{ u64 x61 = (x60 + x30);
{ u64 x62 = (x19 + (x29 << 0x4));
{ u64 x63 = (x62 + (x29 << 0x1));
{ u64 x64 = (x63 + x29);
{ u64 x65 = (x64 >> 0x1a);
{ u32 x66 = ((u32)x64 & 0x3ffffff);
{ u64 x67 = (x65 + x61);
{ u64 x68 = (x67 >> 0x19);
{ u32 x69 = ((u32)x67 & 0x1ffffff);
{ u64 x70 = (x68 + x58);
{ u64 x71 = (x70 >> 0x1a);
{ u32 x72 = ((u32)x70 & 0x3ffffff);
{ u64 x73 = (x71 + x55);
{ u64 x74 = (x73 >> 0x19);
{ u32 x75 = ((u32)x73 & 0x1ffffff);
{ u64 x76 = (x74 + x52);
{ u64 x77 = (x76 >> 0x1a);
{ u32 x78 = ((u32)x76 & 0x3ffffff);
{ u64 x79 = (x77 + x49);
{ u64 x80 = (x79 >> 0x19);
{ u32 x81 = ((u32)x79 & 0x1ffffff);
{ u64 x82 = (x80 + x46);
{ u64 x83 = (x82 >> 0x1a);
{ u32 x84 = ((u32)x82 & 0x3ffffff);
{ u64 x85 = (x83 + x43);
{ u64 x86 = (x85 >> 0x19);
{ u32 x87 = ((u32)x85 & 0x1ffffff);
{ u64 x88 = (x86 + x40);
{ u64 x89 = (x88 >> 0x1a);
{ u32 x90 = ((u32)x88 & 0x3ffffff);
{ u64 x91 = (x89 + x28);
{ u64 x92 = (x91 >> 0x19);
{ u32 x93 = ((u32)x91 & 0x1ffffff);
{ u64 x94 = (x66 + (0x13 * x92));
{ u32 x95 = (u32) (x94 >> 0x1a);
{ u32 x96 = ((u32)x94 & 0x3ffffff);
{ u32 x97 = (x95 + x69);
{ u32 x98 = (x97 >> 0x19);
{ u32 x99 = (x97 & 0x1ffffff);
out[0] = x96;
out[1] = x99;
out[2] = (x98 + x72);
out[3] = x75;
out[4] = x78;
out[5] = x81;
out[6] = x84;
out[7] = x87;
out[8] = x90;
out[9] = x93;
}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}
static __always_inline void fe_sq_tl(fe *h, const fe_loose *f)
{
fe_sqr_impl(h->v, f->v);
}
static __always_inline void fe_sq_tt(fe *h, const fe *f)
{
fe_sqr_impl(h->v, f->v);
}
static __always_inline void fe_loose_invert(fe *out, const fe_loose *z)
{
fe t0;
fe t1;
fe t2;
fe t3;
int i;
fe_sq_tl(&t0, z);
fe_sq_tt(&t1, &t0);
for (i = 1; i < 2; ++i)
fe_sq_tt(&t1, &t1);
fe_mul_tlt(&t1, z, &t1);
fe_mul_ttt(&t0, &t0, &t1);
fe_sq_tt(&t2, &t0);
fe_mul_ttt(&t1, &t1, &t2);
fe_sq_tt(&t2, &t1);
for (i = 1; i < 5; ++i)
fe_sq_tt(&t2, &t2);
fe_mul_ttt(&t1, &t2, &t1);
fe_sq_tt(&t2, &t1);
for (i = 1; i < 10; ++i)
fe_sq_tt(&t2, &t2);
fe_mul_ttt(&t2, &t2, &t1);
fe_sq_tt(&t3, &t2);
for (i = 1; i < 20; ++i)
fe_sq_tt(&t3, &t3);
fe_mul_ttt(&t2, &t3, &t2);
fe_sq_tt(&t2, &t2);
for (i = 1; i < 10; ++i)
fe_sq_tt(&t2, &t2);
fe_mul_ttt(&t1, &t2, &t1);
fe_sq_tt(&t2, &t1);
for (i = 1; i < 50; ++i)
fe_sq_tt(&t2, &t2);
fe_mul_ttt(&t2, &t2, &t1);
fe_sq_tt(&t3, &t2);
for (i = 1; i < 100; ++i)
fe_sq_tt(&t3, &t3);
fe_mul_ttt(&t2, &t3, &t2);
fe_sq_tt(&t2, &t2);
for (i = 1; i < 50; ++i)
fe_sq_tt(&t2, &t2);
fe_mul_ttt(&t1, &t2, &t1);
fe_sq_tt(&t1, &t1);
for (i = 1; i < 5; ++i)
fe_sq_tt(&t1, &t1);
fe_mul_ttt(out, &t1, &t0);
}
static __always_inline void fe_invert(fe *out, const fe *z)
{
fe_loose l;
fe_copy_lt(&l, z);
fe_loose_invert(out, &l);
}
/* Replace (f,g) with (g,f) if b == 1;
* replace (f,g) with (f,g) if b == 0.
*
* Preconditions: b in {0,1}
*/
static __always_inline void fe_cswap(fe *f, fe *g, unsigned int b)
{
unsigned i;
b = 0 - b;
for (i = 0; i < 10; i++) {
u32 x = f->v[i] ^ g->v[i];
x &= b;
f->v[i] ^= x;
g->v[i] ^= x;
}
}
/* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/
static __always_inline void fe_mul_121666_impl(u32 out[10], const u32 in1[10])
{
{ const u32 x20 = in1[9];
{ const u32 x21 = in1[8];
{ const u32 x19 = in1[7];
{ const u32 x17 = in1[6];
{ const u32 x15 = in1[5];
{ const u32 x13 = in1[4];
{ const u32 x11 = in1[3];
{ const u32 x9 = in1[2];
{ const u32 x7 = in1[1];
{ const u32 x5 = in1[0];
{ const u32 x38 = 0;
{ const u32 x39 = 0;
{ const u32 x37 = 0;
{ const u32 x35 = 0;
{ const u32 x33 = 0;
{ const u32 x31 = 0;
{ const u32 x29 = 0;
{ const u32 x27 = 0;
{ const u32 x25 = 0;
{ const u32 x23 = 121666;
{ u64 x40 = ((u64)x23 * x5);
{ u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
{ u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
{ u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
{ u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
{ u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
{ u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
{ u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
{ u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
{ u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
{ u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
{ u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
{ u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
{ u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
{ u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
{ u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
{ u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
{ u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
{ u64 x58 = ((u64)(0x2 * x38) * x20);
{ u64 x59 = (x48 + (x58 << 0x4));
{ u64 x60 = (x59 + (x58 << 0x1));
{ u64 x61 = (x60 + x58);
{ u64 x62 = (x47 + (x57 << 0x4));
{ u64 x63 = (x62 + (x57 << 0x1));
{ u64 x64 = (x63 + x57);
{ u64 x65 = (x46 + (x56 << 0x4));
{ u64 x66 = (x65 + (x56 << 0x1));
{ u64 x67 = (x66 + x56);
{ u64 x68 = (x45 + (x55 << 0x4));
{ u64 x69 = (x68 + (x55 << 0x1));
{ u64 x70 = (x69 + x55);
{ u64 x71 = (x44 + (x54 << 0x4));
{ u64 x72 = (x71 + (x54 << 0x1));
{ u64 x73 = (x72 + x54);
{ u64 x74 = (x43 + (x53 << 0x4));
{ u64 x75 = (x74 + (x53 << 0x1));
{ u64 x76 = (x75 + x53);
{ u64 x77 = (x42 + (x52 << 0x4));
{ u64 x78 = (x77 + (x52 << 0x1));
{ u64 x79 = (x78 + x52);
{ u64 x80 = (x41 + (x51 << 0x4));
{ u64 x81 = (x80 + (x51 << 0x1));
{ u64 x82 = (x81 + x51);
{ u64 x83 = (x40 + (x50 << 0x4));
{ u64 x84 = (x83 + (x50 << 0x1));
{ u64 x85 = (x84 + x50);
{ u64 x86 = (x85 >> 0x1a);
{ u32 x87 = ((u32)x85 & 0x3ffffff);
{ u64 x88 = (x86 + x82);
{ u64 x89 = (x88 >> 0x19);
{ u32 x90 = ((u32)x88 & 0x1ffffff);
{ u64 x91 = (x89 + x79);
{ u64 x92 = (x91 >> 0x1a);
{ u32 x93 = ((u32)x91 & 0x3ffffff);
{ u64 x94 = (x92 + x76);
{ u64 x95 = (x94 >> 0x19);
{ u32 x96 = ((u32)x94 & 0x1ffffff);
{ u64 x97 = (x95 + x73);
{ u64 x98 = (x97 >> 0x1a);
{ u32 x99 = ((u32)x97 & 0x3ffffff);
{ u64 x100 = (x98 + x70);
{ u64 x101 = (x100 >> 0x19);
{ u32 x102 = ((u32)x100 & 0x1ffffff);
{ u64 x103 = (x101 + x67);
{ u64 x104 = (x103 >> 0x1a);
{ u32 x105 = ((u32)x103 & 0x3ffffff);
{ u64 x106 = (x104 + x64);
{ u64 x107 = (x106 >> 0x19);
{ u32 x108 = ((u32)x106 & 0x1ffffff);
{ u64 x109 = (x107 + x61);
{ u64 x110 = (x109 >> 0x1a);
{ u32 x111 = ((u32)x109 & 0x3ffffff);
{ u64 x112 = (x110 + x49);
{ u64 x113 = (x112 >> 0x19);
{ u32 x114 = ((u32)x112 & 0x1ffffff);
{ u64 x115 = (x87 + (0x13 * x113));
{ u32 x116 = (u32) (x115 >> 0x1a);
{ u32 x117 = ((u32)x115 & 0x3ffffff);
{ u32 x118 = (x116 + x90);
{ u32 x119 = (x118 >> 0x19);
{ u32 x120 = (x118 & 0x1ffffff);
out[0] = x117;
out[1] = x120;
out[2] = (x119 + x93);
out[3] = x96;
out[4] = x99;
out[5] = x102;
out[6] = x105;
out[7] = x108;
out[8] = x111;
out[9] = x114;
}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
}
static __always_inline void fe_mul121666(fe *h, const fe_loose *f)
{
fe_mul_121666_impl(h->v, f->v);
}
static void curve25519_generic(u8 out[CURVE25519_KEY_SIZE],
const u8 scalar[CURVE25519_KEY_SIZE],
const u8 point[CURVE25519_KEY_SIZE])
{
fe x1, x2, z2, x3, z3;
fe_loose x2l, z2l, x3l;
unsigned swap = 0;
int pos;
u8 e[32];
memcpy(e, scalar, 32);
curve25519_clamp_secret(e);
/* The following implementation was transcribed to Coq and proven to
* correspond to unary scalar multiplication in affine coordinates given
* that x1 != 0 is the x coordinate of some point on the curve. It was
* also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives
* z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was
* quantified over the underlying field, so it applies to Curve25519
* itself and the quadratic twist of Curve25519. It was not proven in
* Coq that prime-field arithmetic correctly simulates extension-field
* arithmetic on prime-field values. The decoding of the byte array
* representation of e was not considered.
*
* Specification of Montgomery curves in affine coordinates:
* <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
*
* Proof that these form a group that is isomorphic to a Weierstrass
* curve:
* <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
*
* Coq transcription and correctness proof of the loop
* (where scalarbits=255):
* <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
* <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
* preconditions: 0 <= e < 2^255 (not necessarily e < order),
* fe_invert(0) = 0
*/
fe_frombytes(&x1, point);
fe_1(&x2);
fe_0(&z2);
fe_copy(&x3, &x1);
fe_1(&z3);
for (pos = 254; pos >= 0; --pos) {
fe tmp0, tmp1;
fe_loose tmp0l, tmp1l;
/* loop invariant as of right before the test, for the case
* where x1 != 0:
* pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3
* is nonzero
* let r := e >> (pos+1) in the following equalities of
* projective points:
* to_xz (r*P) === if swap then (x3, z3) else (x2, z2)
* to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
* x1 is the nonzero x coordinate of the nonzero
* point (r*P-(r+1)*P)
*/
unsigned b = 1 & (e[pos / 8] >> (pos & 7));
swap ^= b;
fe_cswap(&x2, &x3, swap);
fe_cswap(&z2, &z3, swap);
swap = b;
/* Coq transcription of ladderstep formula (called from
* transcribed loop):
* <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
* <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
* x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
* x1 = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
*/
fe_sub(&tmp0l, &x3, &z3);
fe_sub(&tmp1l, &x2, &z2);
fe_add(&x2l, &x2, &z2);
fe_add(&z2l, &x3, &z3);
fe_mul_tll(&z3, &tmp0l, &x2l);
fe_mul_tll(&z2, &z2l, &tmp1l);
fe_sq_tl(&tmp0, &tmp1l);
fe_sq_tl(&tmp1, &x2l);
fe_add(&x3l, &z3, &z2);
fe_sub(&z2l, &z3, &z2);
fe_mul_ttt(&x2, &tmp1, &tmp0);
fe_sub(&tmp1l, &tmp1, &tmp0);
fe_sq_tl(&z2, &z2l);
fe_mul121666(&z3, &tmp1l);
fe_sq_tl(&x3, &x3l);
fe_add(&tmp0l, &tmp0, &z3);
fe_mul_ttt(&z3, &x1, &z2);
fe_mul_tll(&z2, &tmp1l, &tmp0l);
}
/* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3)
* else (x2, z2)
*/
fe_cswap(&x2, &x3, swap);
fe_cswap(&z2, &z3, swap);
fe_invert(&z2, &z2);
fe_mul_ttt(&x2, &x2, &z2);
fe_tobytes(out, &x2);
memzero_explicit(&x1, sizeof(x1));
memzero_explicit(&x2, sizeof(x2));
memzero_explicit(&z2, sizeof(z2));
memzero_explicit(&x3, sizeof(x3));
memzero_explicit(&z3, sizeof(z3));
memzero_explicit(&x2l, sizeof(x2l));
memzero_explicit(&z2l, sizeof(z2l));
memzero_explicit(&x3l, sizeof(x3l));
memzero_explicit(&e, sizeof(e));
}
|